-Arquímedes fue capaz de utilizar los infinitesimales de forma similar al moderno cálculo integral. A través de la reducción al absurdo, era capaz de contestar problemas mediante aproximaciones con determinado grado de precisión, especificando los límites entre los cuales se encontraba la respuesta correcta. Para ello, dibujó un polígono regular inscrito y otro circunscrito a una misma circunferencia, de manera que la longitud de la circunferencia y el área del círculo quedan acotadas por esos mismos valores de las longitudes y las áreas de los dos polígonos.
-En su obra sobre la Medición del Círculo, Arquímedes ofrece un intervalo para el valor de la raíz cuadrada de 3 de entre 265/153 (aproximadamente 1,7320261) y 1351/780 (aproximadamente 1,7320512). El valor real se ubica aproximadamente en 1,7320508, por lo que la estimación de Arquímedes resultó ser muy exacta. Sin embargo, introdujo este resultado en su obra sin explicación de qué método había utilizado para obtenerlo.
-En su obra sobre La cuadratura de la Parábola, Arquímedes probó que el área definida por una parábola y una línea recta equivalía exactamente a 4/3 el área del correspondiente triángulo inscrito, tal y como se puede observar en la figura de la derecha. Para obtener ese resultado, desarrolló una serie geométrica infinita con una razón común de 1/4: