jueves, 28 de febrero de 2013

Scipione del Ferro

Scipione del Ferro ha sido un matemático italiano, a la que se debe el primer método determinante para las ecuaciones de tercer grado.Scipione del Ferro se educó en la Universidad de Bolonia que fue fundada en el siglo XI.No han sobrevivido escritos de del Ferro, ello se debe a la resistencia que tenía a divulgar sus trabajos, prefería comunicarlos a un reducido grupo de alumnos y amigos. Se cree que tenía algún manuscrito donde guardaba sus importantes descubrimientos. Este manuscrito pasó al yerno, Annibale Nave, cuando del Ferro murió en 1526. Que también se dedicó a la Matemática y lo reemplazó como catedrático, cuando falleció, en la Universidad de Bolonia.
Hoy se cree que del Ferro sólo podía resolver cúbicas de esa forma x^3 + mx = n, con m y n positivos. Hoy día también se sabe, que el caso general, y^3 - by2 + cy - d = 0, se reduce a este por medio del cambio lineal y = x + b/3. Obteniéndose la cúbica reducida anterior con los valores m = c - b/3, n = d - bc/3 + 2b/27.
En notación moderna la solución de la cúbica reducida x^3 + bx = c se obtiene de la siguiente forma: sea x=y-z, entonces (y-z)^3=y^3-z^3-3y^2z+3yz^2. Sacando factor común a 3yz, y pasando al primer miembro, se obtiene (y-z)^3+3yz(y-z)=y^3-z^3. Donde se puede identificar los coeficientes b=3yz, c=y^3-z^3.
De donde, z = b/3y, lo podemos sustituir en la otra igualdad, obteniendo y^3- b^3/27y^3 = c. O sea, y^6 -cy^3 - b^3/27 =0. De donde podemos obtener el valor de y^3, resolviendo la ecuación cuadrática t^2-ct - b^3/27 =0 y sustituyendo ese valor en z = b/3y. Restando finalmente ambos valores obtenemos una solución de la cúbica reducida. Fórmula hoy día conocida como del Ferro-Tartaglia:
Formula Tartaglia

No hay comentarios:

Publicar un comentario